- Produits
- Systèmes
- Capteurs
- Logiciels
- Accessoires
- Integration
Artificial intelligence in x-ray technology
ZADD Segmentation
AI-based defect inspection for computed tomographyThe app ZADD Segmentation detects small and fuzzy defects in components reliably and quickly even on poor image quality. For this purpose, the machine learning-based software relies on Artificial Intelligence. Defects and abnormalities are detected, segmented and evaluated using AI for CT data inspection. ZADD thus supports your X-Ray applications in component development, process optimization and fault analysis. ZADD being the acronym for ZEISS Automated Defect Detection, is an optional app for our standard CT inspection software ZEISS INSPECT X-Ray.
Your advantages with ZADD segmentation at a glance
Time savings with AI
- Minimize inspection effort
- Reliable and fast error detection
Robust results & clear reporting
- Reliable results, even if image quality is not perfect
- Suitable for mixed and dense materials
Easy defect assessment
- Custom optimization of defect analysis
- Simple evaluation and recognition of scrap parts
ZEISS Automated Defect Detection
AI software for your application areas
Detect defects in components reliably
Various defects can occur during the complex manufacturing process of components. Especially inside, they are not visible to the naked eye and can have a major impact on the stability and functionality of the component. Artificial intelligence combined with industrial computed tomography makes these hidden problem areas visible early. The ZEISS Automated Defect Detection software specializes in the detection of different defects, so that even on poor image quality with many artifacts, defects can be detected quickly and reliably.
Identify and sort scrap at an early stage
To be able to sort out defective components in a value chain at an early stage, the 3D data must be evaluated reliably and quickly. Thanks to ZADD, components with critical defects are easily recognized and can be accurately sorted out or, if possible, reworked. Good parts, on the other hand, pass through the further machining process unhindered. The result: a lower rejection rate and high quality of the components. In this way, you can achieve a steady increase in efficiency and maximum process reliability with AI in CT.
How ZADD Segmentation works
Good part or bad part? ZEISS Automated Defect Detection (ZADD) supports this decision with Artificial Intelligence. Complete your evaluation with the ZADD Segmentation app for ZEISS INSPECT X-Ray. Watch this video to see how it works.
Workflow
Pre-trained models for specific applications
When using the app ZADD Segmentation in ZEISS INSPECT X-Ray you can benefit from our pre-trained Machine Learning models. Use one out of three available options for alloy castings, hairpin inspection or electronics.
Alloy
AI-inspection of hidden defects in alloy castings
Hairpins
Automated hairpin analysis for e-drive applications
Electronics
Solder joint analysis made easy in electronics
Examples of typical casting defects that ZADD can find
Artificial intelligence (AI) in computed tomography (CT)
AI drives CT forward
Artificial intelligence is ubiquitous. Autonomous driving is just one of many examples of the application of AI. Artificial intelligence is also a topic in industry and thus in computed tomography and is becoming increasingly significant. This is because it enables defect analyses to be carried out even more reliably, accurately and quickly. In industry, a defect is often located inside a component. An optical inspection process for quality control is then no longer sufficient because it does not provide any indication of internal defects. X-ray inspection allows a close look inside a component and can thus detect defects at an early stage. By using AI in CT inspection, a partially automated defect analysis is realized.
Explanation of terms:
In connection with AI and CT, the terms AI Defect Detection or AI Anomaly Detection are often used. AI stands for Artificial Intelligence and Defect Detection or Anomaly Detection means defect detection or anomaly detection. The addition of "NDT" makes it clear that AI works non-destructively, because NDT stands for non-destructive testing.
When will AI be used in computed tomography?
Artificial intelligence is a trend in automation. Process requirements are becoming tighter and tighter, and even in harsh measurement environments, image evaluation and defect analysis must work quickly and reliably. This is especially true for safety-relevant components, e.g. in the automotive industry or aerospace. To increase quality by performing defect analyses faster, while at the same time offering high process reliability, AI is used for reading CT scans. Defect detection with AI eliminates the need for manual tuning of parameters, thus avoiding subjective decisions in defect detection.
ZEISS Automated Defect Detection is particularly useful when volume data is affected by overly dense materials or short scan times. While artifacts and noise in the images usually cause faulty detections, the software remains unaffected by these effects.
These industries benefit from AI with ZEISS Automated Defect Detection
Contact us for a personal demo
Our service will accompany you from the beginning whether selecting the right ML model or developing a specially trained solution. We support you in the operation, optimization and evaluation performance of the system and solve your individual inspection tasks in many cases.